问题标题:
【设x1、x2是方程2x2-4mx+2m2+3m-2=0的两个实根,当m为何值时,x12+x22有最小值,并求这个最小值.】
问题描述:
设x1、x2是方程2x2-4mx+2m2+3m-2=0的两个实根,当m为何值时,x12+x22有最小值,并求这个最小值.
丛树洲回答:
∵x1、x2是方程2x2-4mx+2m2+3m-2=0的两个实根,∴△=(-4m)2-4×2×(2m2+3m-2)≥0,可得m≤23,又x1+x2=2m,x1x2=2m2+3m−22,∴x12+x22=2( m−34) 2+78=2(34−m)2+78,∵m≤23,∴34-m≥34-23>0,∴...
查看更多