问题标题:
【初三数学(一元二次方程)速度!已知关于x的一元二次方程aX^2+bx+c=0(a≠0)的两根之比为2:1,求证:2b^2=9ac】
问题描述:

初三数学(一元二次方程)速度!

已知关于x的一元二次方程aX^2+bx+c=0(a≠0)的两根之比为2:1,求证:2b^2=9ac

李沫回答:
  由题意得2*x1=x2   又有韦达定理   x1+x2=-b/a   x1*x2=c/a   所以3*x2=-b/a   2*x2^2=c/a   联立,消去x2得   9/2=b^2/ac   即2b^2=9ac
查看更多
数学推荐
热门数学推荐