问题标题:
【设集合A={x|x2+4x=0,x∈R}、B={x|x2+2(a+1)x+a2-1=0},若B是A的子集,求实数a的范围.】
问题描述:

设集合A={x|x2+4x=0,x∈R}、B={x|x2+2(a+1)x+a2-1=0},若B是A的子集,求实数a的范围.

胡白燕回答:
  ∵A={x|x2+4x=0,x∈R}、∴A={0,-4}∵B={x|x2+2(a+1)x+a2-1=0},且B⊆A故①B=Φ时,△=4(a+1)2-4(a2-1)<0,即a<-1,满足B⊆A②B≠Φ时,当a=-1,此时B={0},满足B⊆A当a>-1时,x=0,-4是方程x2+2(a+1)x+...
查看更多
数学推荐
热门数学推荐