问题标题:
求z=xsinxy+e^(x+y)的二阶导数.
问题描述:
求z=xsinxy+e^(x+y)的二阶导数.
崔旭东回答:
∂z/∂x
=sinxy+x*cosxy*y+e^(x+y)
而
∂z/∂y
=x*cosxy*x+e^(x+y)
=x^2*cosxy+e^(x+y)
那么继续求导得到二阶导数
∂^2z/∂x^2
=y*cosxy+y*cosxy-x*sinxy*y^2+e^(x+y)
=2y*cosxy-xy^2*sinxy+e^(x+y)
∂^2z/∂x∂y
=x*cosxy+x*cosxy-x^2*sinxy*y+e^(x+y)
=2x*cosxy-x^2*sinxy*y+e^(x+y)
∂^2z/∂y^2
=-x^3*sinxy+e^(x+y)
查看更多