问题标题:
高等数学计算三重积分计算三重积分下∫∫∫(D区域)(x^2+y^2)dxdydz,其中区域D由曲面z=[√(x^2+y^2)]和z=[√(8-x^2-y^2)]所围成.
问题描述:

高等数学计算三重积分

计算三重积分下∫∫∫(D区域)(x^2+y^2)dxdydz,其中区域D由曲面z=[√(x^2+y^2)]和z=[√(8-x^2-y^2)]所围成.

欧阳勇回答:
  首先围成的是下边是一个抛物面体上部是球的部分,让z1=z2,则交界处的交线方程是x^2+y^2=4,且对应的z=2,因为dv=r^2sinadado(a为r与z轴夹角,o为在xoy面内投影与x轴夹角),知45•<a<900是从0度变化到180度所以...
查看更多
数学推荐
热门数学推荐