问题标题:
虚数有什么作用?为什么科学家要弄个虚数出来?它又什么作用?
问题描述:
虚数有什么作用?
为什么科学家要弄个虚数出来?它又什么作用?
毛艳娥回答:
虚数
1、词典释义
xūshù
(1)
[unreliablefigure]∶虚假不实的数字
(2)
[imaginarynumber]∶实数与虚数单位之积,亦即实部为零的复数(如3i)
2、数学名词
(一)在数学里,如果有某个数的平方是负数的话,那个数就是虚数了.所有的虚数都是复数.
“虚数”这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字.后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实.虚数轴和实数轴构成的平面称复平面,复平面上每一点对应着一个复数.
虚数的符号1777年瑞士数学家欧拉开始使用符号i=√(-1)表示虚数的单位.而后人将虚数和实数有机地结合起来,写成a+bi形式(a、b为实数),称为复数.
虚数的历史由于虚数闯入数的领域时,人们对它的实际用处一无所知,在实际生活中似乎也没有用复数来表达的量,因此,在很长的一段时间里,人们对虚数产生过种种怀疑和误解.笛卡尔称“虚数”的本意是指他是假的;莱布尼兹在公元18世纪初则认为:“虚数是美妙而奇异的神灵隐蔽所,它几乎是既存在又不存在的两栖物.”欧拉尽管在许多地方用了虚数,但又说一切形如√(-1)、√(-2)的数学式都是不可能有的,纯属虚幻的.
欧拉之后,挪威的一个测量学家维塞尔,提出把复数a+bi用平面上的点(a,b)来表示.后来,高斯提出了复平面的概念,终于使复数有了立足之地,也为复数的应用开辟了道路.现在,复数一般用来表示向量(有方向的数量),这在力学、地图学、航空学中的应用是十分广泛的.虚数越来越显示出其丰富的内容,真是:虚数不虚.
(二)不表示实在数量的数词.如下面例子中的一、三、五、九、百、千、万等数词都是虚数.【例】以一当十|三五成群|千方百计|万紫千红|九牛一毛|龙生九子|三月不知肉味|.
查看更多