问题标题:
已知函数f(x)=ln(1+x)-ax在x=-处的切线的斜率为1.(Ⅰ)求a的值及f(x)的最大值;(Ⅱ)证明:1+++…+>ln(n+1)(n∈N*);(Ⅲ)设g(x)=b(ex-x),若f(x)≤g(x)
问题描述:
已知函数f(x)=ln(1+x)-ax在x=-处的切线的斜率为1.
(Ⅰ)求a的值及f(x)的最大值;
(Ⅱ)证明:1+++…+>ln(n+1)(n∈N*);
(Ⅲ)设g(x)=b(ex-x),若f(x)≤g(x)恒成立,求实数b的取值范围.
石立岸回答:
【答案】分析:(Ⅰ)函数f(x)的定义域为(-1,+∞).求导数,利用函数f(x)=ln(1+x)-ax在x=-处的切线的斜率为1,可求a的值,再确定函数的单调性,从而可求f(x)的最大值;(Ⅱ)法(一):由(...
查看更多