问题标题:
(2014•黄冈二模)如图,菱形ABCD的边长为6且∠DAB=60°,以点A为原点、边AB所在的直线为x轴且顶点D在第一象限建立平面直角坐标系.动点P从点D出发沿折线DCB向终点B以2单位/每秒的速度运动
问题描述:

(2014•黄冈二模)如图,菱形ABCD的边长为6且∠DAB=60°,以点A为原点、边AB所在的直线为x轴且顶点D在第一象限建立平面直角坐标系.动点P从点D出发沿折线DCB向终点B以2单位/每秒的速度运动,同时动点Q从点A出发沿x轴负半轴以1单位/秒的速度运动,当点P到达终点时停止运动,运动时间为t,直线PQ交边AD于点E.

(1)求出经过A、D、C三点的抛物线解析式;

(2)是否存在时刻t使得PQ⊥DB,若存在请求出t值,若不存在,请说明理由;

(3)设AE长为y,试求y与t之间的函数关系式;

(4)若F、G为DC边上两点,且点DF=FG=1,试在对角线DB上找一点M、抛物线ADC对称轴上找一点N,使得四边形FMNG周长最小并求出周长最小值.

崔业怡回答:
  (1)△DAB中,∠DAB=60°,DA=AB=6   则:D到y轴的距离=12
查看更多
其它推荐
热门其它推荐