问题标题:
初三上册数学几何题三角形证明本题无图.已知三角形ABC,AB=AC,BD平分角ABC交AC于D.(1)若角A=100度,求证:BC=BD+AD(2)若BC=BD+AD,求证:角A=100度.
问题描述:
初三上册数学几何题三角形证明
本题无图.已知三角形ABC,AB=AC,BD平分角ABC交AC于D.
(1)若角A=100度,求证:BC=BD+AD
(2)若BC=BD+AD,求证:角A=100度.
郭振芹回答:
1)
证明:如图,在BC上截取BE=BA,延长BD到F,使BF=BC,连接DE、CF.
又∵∠1=∠2,BD是公共边
∴△ABD≌△EBD
∴∠DEB=∠A=100°,
所以∠DEC=80°
∵AB=AC,BD平分∠ABC
∴∠1=∠2=20°,∠ACB=40°
∵BC=BF,∠2=20°,
∴∠F=∠FCB=80°
则∠F=∠DEC
∴∠FCD=80°-∠ACB=40°
又∵DC=DC,
∴△DCE≌△DCF(AAS)
∴DF=DE=AD
∴BC=BF=BD+DF=BD+AD
郭振芹回答:
2)如图,在BC上截取BE=BD,因为BC=BD+AD所以EC=AD因为BD平分∠ABC所以AB/BC=AD/DC因为AD=EC所以AB/BC=AD/DC=EC/DC又∠ABC=∠C所以△ABC∽△EDC所以AB/AC=ED/EC=1即ED=EC设∠C=x则∠BED=2x,∠DBE=180°-4X,∠DBE=X/2所以180-4x=x/2,解得,x=40°,∴∠A=100°
查看更多