问题标题:
【如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,若将△APB绕着点B逆时针旋转后得到△CQB.(1)求点P与点Q之间的距离.(2)求∠APB的度数.】
问题描述:
如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,若将△APB绕着点B逆时针旋转后得到△CQB.
(1)求点P与点Q之间的距离.
(2)求∠APB的度数.
奥山明回答:
(1)连接PQ,由题意可知BQ=PC=10,AQ=AP,∠PAC=∠QAB,而∠PAC+∠BAP=60°,所以∠PAQ=60度.故△APQ为等边三角形,所以PQ=AP=AQ=4;(2)因为PA=3,PB=4,PC=5,利用勾股定理的逆定理可知:PQ2+BP2=BQ2,所以△BP...
查看更多
八字精批
八字合婚
八字起名
八字财运
2024运势
测终身运
姓名详批
结婚吉日