问题标题:
【希望十二小时内有解答已知双曲线c:x^2/a^2-y^2/b^2=1(a>0,b>0)的离心率为√3,右准线方程x=√3/3(1)求双曲线的方程(2)设直线l是圆O:x^2+y^2=2上动点P(x0,y0)(x0y0≠0)处的切线,l与双曲线C交于不同两】
问题描述:
希望十二小时内有解答
已知双曲线c:x^2/a^2-y^2/b^2=1(a>0,b>0)的离心率为√3,右准线方程x=√3/3(1)求双曲线的方程(2)设直线l是圆O:x^2+y^2=2上动点P(x0,y0)(x0y0≠0)处的切线,l与双曲线C交于不同两点A,B,证明∠AOB的大小为定值.
董华明回答:
这种题你就不能怕麻烦,就得死算.
(1)e=c/a=√3,a^2/c=√3/3
a=1,c=√3,b=√2,双曲线方程为
2x^2-y^2=2
x^2+y^2=2上动点P(x0,y0)(x0y0≠0)处的切线方程为
x0x+y0y=2
(2)
设A,B,的坐标为(Xa,Ya),(Xb,Yb),
则(Xa,Ya),(Xb,Yb)为方程组
x0x+y0y=2(1)
2x^2-y^2=2(2)
的解
(1)代入(2)消去y,得到
(2-x0^2/y0^2)/x^2+4x0x/y0^2-(4/y0^2+2)=0
XaXb=-(4/y0^2+2)/(2-x0^2/y0^2)=-(4+2y0^2)/(2y0^2-x0^2)
(1)代入(2)消去x,得到
(2y0^2-x0^2)y^2-8y0y+8-2x0^2=0
YaYb=(8-2x0^2)/(2y0^2-x0^2)
XaXb+YaYb
=-(4+2y0^2)/(2y0^2-x0^2)+(8-2x0^2)/(2y0^2-x0^2)
=[4-2(x0^2+y0^2)]/(2y0^2-x0^2)
(x0,y0)是圆x^2+y^2=2的点,上式分母为0,
XaXb+YaYb=0
向量OA和OB垂直,∠AOB=90度
查看更多