问题标题:
证明:映射f:X→Y是双射当且仅当对于X的任一子集A有f(X-A)=Y-f(A)
问题描述:
证明:映射f:X→Y是双射当且仅当对于X的任一子集A有f(X-A)=Y-f(A)
郭崇慧回答:
证明必要性,对于f(X-A)的任一元素y,则存在不属于A的元素x,有y=f(x),由于f是单射,故y不可能属于f(A),故y属于Y-f(A),于是f(X-A)包含于Y-f(A);
对于Y-f(A)的任一元素y,y不属于f(A),由于f是满射,则必存在x不属于A,即属于X-A,有y=f(x),则y属于f(X-A),故Y-f(A)包含于f(X-A),于是f(X-A)=Y-f(A).
充分性,反证法,如果对于X的任一子集A有f(X-A)=Y-f(A),但f:X→Y不是双射,此时f或不是单射,或不是满射,如果不是单射,则存在X中的两个不同元素x1,x2有y=f(x1)=f(x2),取A={x1},则x2不属于A,y=f(x2)属于f(X-A),但y=f(x1)又属于f(A),即y不属于Y-f(A),故f(X-A)≠Y-f(A);
如果不是满射,则存在Y中的元素y,对任意X中的元素x,y≠f(x),即y不属于f(X),此时取A=空集,f(X-A)=f(X),Y-f(A)=Y,但f(X)≠Y,这是因为y属于Y但不属于f(X),即f(X-A)≠Y-f(A).
也即f:X→Y不是双射,则存在X的子集A有f(X-A)≠Y-f(A).
查看更多