问题标题:
在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足Sn(Sn-an)+2an=0(Ⅰ)证明数列{1Sn}是等差数列;(Ⅱ)求Sn和数列{an}的通项公式an;(Ⅲ)设bn=Snn,求数列{bn}的前n项和Tn.
问题描述:
在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足Sn(Sn-an)+2an=0
(Ⅰ)证明数列{
(Ⅱ)求Sn和数列{an}的通项公式an;
(Ⅲ)设b n=
梁伟回答:
证明:(I)∵当n≥2时,an=Sn-Sn-1,且Sn(Sn-an)+2an=0
∴Sn[Sn-(Sn-Sn-1)]+2(Sn-Sn-1)=0
即Sn•Sn-1+2(Sn-Sn-1)=0
即1S
查看更多