问题标题:
已知正项数列{an}满足:an2-nan-(n+1)=0,数列{bn}的前n项和为Sn,且Sn=2bn-2.(Ⅰ)求数列{an},{bn}的通项公式;(Ⅱ)求数列{1an•log2bn}的前n项和Tn.
问题描述:
已知正项数列{an}满足:an2-nan-(n+1)=0,数列{bn}的前n项和为Sn,且Sn=2bn-2.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求数列{
宁晓斌回答:
(Ⅰ)由an2-nan-(n+1)=0,得an=n+1,或an=-1(舍去),
∴an=n+1;
又Sn=2bn-2,∴n≥2时,Sn-1=2bn-1-2,
两式相减,得bn=Sn-Sn-1=2bn-2bn-1,
∴bn=2bn-1(n≥2),
∴{bn}为等比数列,公比q=2,
又∵S1=b1=2b1-2,∴b1=2,
∴b
查看更多