问题标题:
已知正项数列{an}满足:an2-nan-(n+1)=0,数列{bn}的前n项和为Sn,且Sn=2bn-2.(Ⅰ)求数列{an},{bn}的通项公式;(Ⅱ)求数列{1an•log2bn}的前n项和Tn.
问题描述:

已知正项数列{an}满足:an2-nan-(n+1)=0,数列{bn}的前n项和为Sn,且Sn=2bn-2.

(Ⅰ)求数列{an},{bn}的通项公式;

(Ⅱ)求数列{1an•log2bn}的前n项和Tn.

宁晓斌回答:
  (Ⅰ)由an2-nan-(n+1)=0,得an=n+1,或an=-1(舍去),   ∴an=n+1;   又Sn=2bn-2,∴n≥2时,Sn-1=2bn-1-2,   两式相减,得bn=Sn-Sn-1=2bn-2bn-1,   ∴bn=2bn-1(n≥2),   ∴{bn}为等比数列,公比q=2,   又∵S1=b1=2b1-2,∴b1=2,   ∴b
查看更多
其它推荐
热门其它推荐