问题标题:
【已知函数f(x)=2cos^2(ωx/2)+cos(ωx+π/3)(ω>0)就是这样】
问题描述:

已知函数f(x)=2cos^2(ωx/2)+cos(ωx+π/3)(ω>0)

就是这样

韩雪培回答:
  f(x)=2cos^2(ωx/2)+cos(ωx+π/3)   =1+cos(ωx)+cos(ωx+π/3)   =1+cos(ωx)+cos(ωx)cosπ/3-sin(ωx)sinπ/3   =1+3cos(ωx)/2-√3sin(ωx)/2   =1+√3*[√3/2cos(ωx)-1/2sin(ωx)]   =1+√3*[sinπ/3cos(ωx)-cosπ/3sin(ωx)]   =1+√3*sin(π/3-ωx)   或者直接用和差化积   f(x)=2cos^2(ωx/2)+cos(ωx+π/3)   =1+cos(ωx)+cos(ωx+π/3)   =1+2cos[(ωx+ωx+π/3)/2]cos(ωx-ωx-π/3)/2]   =1+2cos(ωx+π/6)cos(π/6)   =1+√3cos(ωx+π/6)
查看更多
数学推荐
热门数学推荐