问题标题:
【设f(x)在[a,b]上有连续的导数,且f(x)不恒等于0,f(a)=f(b)=0,证明∫(a,b)xf(x)f'(x)dx】
问题描述:
设f(x)在[a,b]上有连续的导数,且f(x)不恒等于0,f(a)=f(b)=0,证明∫(a,b)xf(x)f'(x)dx
侯跃岭回答:
用分部积分就可以证明了,∫(a,b)xf(x)f'(x)dx=∫(a,b)xf(x)df(x)=1/2∫(a,b)xdf(x)^2=1/2x*f(x)^2|(a,b)-1/2∫(a,b)f(x)^2dx,因为f(a)=f(b)=0,所以有1/2x*f(x)^2|(a,b)=0,而∫(a,b)f(x)^2dx中被积函数是正数,所以积...
查看更多
八字精批
八字合婚
八字起名
八字财运
2024运势
测终身运
姓名详批
结婚吉日