问题标题:
【设数列{an}满足a1=2,an+1=an+3•2n-1.(1)求数列{an}的通项公式an;(2)令bn=nan,求数列{bn}的前n项和Sn;(3)令cn=log2an+13,证明:1c2c3+1c3c4+…+1cncn+1<1(n≥2).】
问题描述:

设数列{an}满足a1=2,an+1=an+3•2n-1.

(1)求数列{an}的通项公式an;

(2)令bn=nan,求数列{bn}的前n项和Sn;

(3)令cn=log2an+13,证明:1c2c3+1c3c4+…+1cncn+1<1(n≥2).

李德华回答:
  (1)∵a1=2,an+1-an=3•2n-1,∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=2+3×20+3×21+3×22+…+3×2n-2=2+3(20+21+22+…+2n-2)=2+3×1(1-2n-1)1-2=3×2n-1-1(n≥2),经验证n=1也成立,∴an=3×2n-1-1;(...
查看更多
生物推荐
热门生物推荐