问题标题:
已知四棱锥O-ABCD的顶点在球心O,底面正方形ABCD的四个顶点在球面上,且四棱锥O-ABCD的体积为3根号2/2,AB=根号3,则球O的体积为多少?
问题描述:

已知四棱锥O-ABCD的顶点在球心O,底面正方形ABCD的四个顶点在球面上,且四棱锥O-ABCD的体积为3根号2/2,

AB=根号3,则球O的体积为多少?

孙丰回答:
  由题可知,四棱锥的棱OA是球的半径,只要求出OA的长度,就可以求出球的体积了.∴令r=OA由四棱锥体积公式得:V(四棱锥)=1/3ShS为底面正方形面积,h为高.∴S=AB²由题知V=3√2/2AB=√3∴S=AB²=3h=√2/2又(AB/...
查看更多
八字精批 八字合婚 八字起名 八字财运 2024运势 测终身运 姓名详批 结婚吉日
已出生未出生
数学推荐
热门数学推荐
付费后即可复制当前文章
《已知四棱锥O-ABCD的顶点在球心O,底面正方形ABCD的四个顶点在球面上,且四棱锥O-ABCD的体积为3根号2/2,AB=根号3,则球O的体积为多少?|小学数学问答-字典翻译问答网》
限时特价:5.99元/篇原价:20元