问题标题:
若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2-6x-27=0,x2-2x-8=0,x2+3x-274=0,x2+6x-27=0,x2+4x+4=0,都是“偶系二次方程”.(1)判
问题描述:

若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2-6x-27=0,x2-2x-8=0,x2+3x-

27

4

=0,x2+6x-27=0,x2+4x+4=0,都是“偶系二次方程”.

(1)判断方程x2+x-12=0是否是“偶系二次方程”,并说明理由;

(2)对于任意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程”,并说明理由.

我不懂的会问所以一定要准时回答~

洪卫回答:
  1不是该方程两根为-4和3,两根绝对值之和为7,不是偶数.故该方程不是偶系二次方程.
华安回答:
  ····
查看更多
数学推荐
热门数学推荐