问题标题:
【如图所示,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,AB=1,BM⊥PD,垂足为M.(Ⅰ)求证:AM⊥PD;(Ⅱ)求三棱锥B-AMC的体积;(III)已知点N在AC上,当N点在什么位置时,使得】
问题描述:
如图所示,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,AB=1,BM⊥PD,垂足为M.
(Ⅰ)求证:AM⊥PD;
(Ⅱ)求三棱锥B-AMC的体积;
(III)已知点N在AC上,当N 点在什么位置时,使得MN∥平面PBC.
金立平回答:
(Ⅰ)证明:∵PA⊥平面ABCD,∴PA⊥AB.
又∵BA⊥AD,AD∩PA=A,
∴AB⊥平面PAD,∴AB⊥PD.
∵BM⊥PD,AB∩BM=B,
∴PD⊥平面ABM.
∴PD⊥AM.
(Ⅱ)由(Ⅰ)可知:AM⊥PD.
∵在△PAD中,AP=AD=2,∴M是PD的中点.
过点M作MH⊥AD,则MH⊥底面ABCD,且MH=12AP=1
查看更多
八字精批
八字合婚
八字起名
八字财运
2024运势
测终身运
姓名详批
结婚吉日