问题标题:
高中三角形和向量的综合问题在△ABC中,AB乘以AC=1,AB乘以BC=-3,(这里的AB,AC,BC都是指向量),求sin(A-B)/sinC的值.
问题描述:
高中三角形和向量的综合问题
在△ABC中,AB乘以AC=1,AB乘以BC=-3,(这里的AB,AC,BC都是指向量),求sin(A-B)/sinC的值.
黎辉勇回答:
AB乘以AC=|AB|*|AC|*cosA=1cosA=1/bc余弦定理cosA=(b^2+c^2-a^2)/2bcb^2+c^2-a^2=2(1)AB乘以BC=-BA乘以BC=-|BA|*|BC|*cosB=-3cosB=3/ac余弦定理cosB=(c^2+a^2-b^2)/2acc^2+a^2-b^2=6(2)(1)+(2)c=2a^2-b^2=4sin(...
查看更多