问题标题:
【3元非齐次线性方程组Ax=b的系数矩阵的秩为2,已知α1,α2,α3是它的3个解向量,其中α1=(1,1,1)T,α2+α3=(2,4,6)T,则该方程组的通解是______.】
问题描述:
3元非齐次线性方程组Ax=b的系数矩阵的秩为2,已知α1,α2,α3是它的3个解向量,其中α1=(1,1,1)T,α2+α3=(2,4,6)T,则该方程组的通解是______.
陈吉学回答:
因为α1,α2,α3是Ax=b的3个解向量,且A的秩为2,所以Ax=0的基础解系中解的个数为3-2=1.利用线性方程组解的性质可得,A((α2+α3)-2α1)=Aα2+Aα3-2Aα1=b+b-2b=0,故(α2+α3)-2α1=(0,2,4)T为Ax=0的...
查看更多