问题标题:
(12分)有一块边长为4的正方形钢板,现对其切割、焊接成一个长方体无盖容器(切、焊损耗忽略不计)。有人应用数学知识作如下设计:在钢板的四个角处各切去一个全等的小正方形
问题描述:
(12分)有一块边长为4的正方形钢板,现对其切割、焊接成一个长方体无盖容器(切、焊损耗忽略不计)。有人应用数学知识作如下设计:在钢板的四个角处各切去一个全等的小正方形,剩余部分围成一个长方体,该长方体的高是小正方形的边长。 |
何绘宇回答:
(1)当时,取最大值 ;(2)重新设计方案如下:如图①,在正方形的两个角处各切下一个边长为1的小正方形;如图②,将切下的小正方形焊在未切口的正方形一边的中间;将图②焊成长方体容器.新焊长方体容器底面是一长方形,长为3,宽为2,此长方体容积为6,故第二种方案符合要求.
本试题主要是考查了导数在研究函数中的运用。求解最值问题。(1)因为设切去正方形边长为x,则焊接成的长方体的底面边长为,高为x,,然后求解导数来判定单调性得到极值,进而求解最值。(2)在正方形的两个角处各切下一个边长为1的小正方形;如图②,将切下的小正方形焊在未切口的正方形一边的中间;将图②焊成长方体容器.新焊长方体容器底面是一长方形,长为3,宽为2,此长方体容积为6,故第二种方案符合要求(1)设切去正方形边长为x,则焊接成的长方体的底面边长为,高为x, ……(2分). ……(3分)当时,是关于x的增函数;当时,是关于x的减函数.∴当时,取最大值 ……(7分)(2)重新设计方案如下:如图①,在正方形的两个角处各切下一个边长为1的小正方形;如图②,将切下的小正方形焊在未切口的正方形一边的中间;将图②焊成长方体容器.新焊长方体容器底面是一长方形,长为3,宽为2,此长方体容积为6,故第二种方案符合要求.……(12分)
查看更多