问题标题:
高等数学第五版第64页习题1-8第三题
问题描述:
高等数学第五版第64页习题1-8第三题
隆刚回答:
当0<X<1时,lim(n→∞)〔(1-X^2n)/(1+X^2n)〕*X=X
当X=0时,lim(n→∞)〔(1-X^2n)/(1+X^2n)〕*X=0
当X=±1时,lim(n→∞)〔(1-X^2n)/(1+X^2n)〕*X=0
当-1<X<0时,lim(n→∞)〔(1-X^2n)/(1+X^2n)〕*X=X
当X>1或X<-1时,lim(n→∞)〔(1-X^2n)/(1+X^2n)〕*X
=lim(n→∞)〔2/(1+X^2n)-1〕*X=-X
f(x)=x,-1<X<1且X≠0
f(x)=0,X=1,-1或0
f(x)=-x,X>1或X<-1
∵lim(x→0)f(x)=lim(x→0)x=0=f(0)
∴0为连续点.
∵lim(x→1+)f(x)=lim(x→1+)(-x)=-1
lim(x→1-)f(x)=lim(x→1-)x=1
∴x=1为函数的跳跃间断点,属第一类间断点.
又∵lim(x→-1+)f(x)=lim(x→-1+)x=-1
lim(x→-1-)f(x)=lim(x→-1-)x=1
∴x=-1为函数的跳跃间断点,属第一类间断点.
∴函数f(x)在除1和-1点外,其它点都为连续点.
查看更多