问题标题:
【如图所示,AB为倾角θ=37°的斜面轨道,轨道的AC部分光滑,CB部分粗糙,BP为圆心角等于143°、半径R=lm的竖直光滑圆弧形轨道,两轨道相切于B点,P、O两点在同一竖直线上,轻弹簧一端固定】
问题描述:
如图所示,AB为倾角θ=37°的斜面轨道,轨道的AC部分光滑,CB部分粗糙,BP为圆心角等于143°、半径R=l m的竖直光滑圆弧形轨道,两轨道相切于B点,P、O两点在同一竖直线上,轻弹簧一端固定在A点,另一自由端在斜面上C点处,现有一质量m=2kg的小物块在外力作用下将弹簧缓慢压缩到D点后(不栓接)释放,物块经过C点后,从C点运动到B点过程中的位移与时间的关系为x=12t-4t2(式中x单位是m,t单位是s),假设物块第一次经过B点后恰能到达P点,sin 37°=0.6,cos37°=0.8,g取10m/s2.试求:
(1)若CD=1m,试求物块从D点运动到C点的过程中,弹簧对物块所做的功;
(2)B、C两点间的距离x;
(3)若在P处安装一个竖直弹性挡板,小物块与挡板碰撞后速度反向,速度大小不变,小物块与弹簧相互作用不损失机械能,试通过计算判断物块在第一次与挡板碰撞后的运动过程中是否会脱离轨道?
潘燕晖回答:
(1)由x=12t-4t2知,物块在C点速度为:v0=12 m/s,设物块从D点运动到C点的过程中,弹簧对物块所做的功为W,由动能定理得:W-mgsin 37°•CD=12mv02代入数据得:W=12mv02+mgsin 37°•CD=156 J(2)由x=12t-4t2...
查看更多