问题标题:
如图为一传送货物的装置,倾角为α=53°的斜面AB与水平传送带在B处由一光滑小圆弧平滑衔接,可看作质点的货物从斜面上A点由静止下滑,经长度为S1的传送带运输后,最后抛入固定于水平地
问题描述:

如图为一传送货物的装置,倾角为α=53°的斜面AB与水平传送带在B处由一光滑小圆弧平滑衔接,可看作质点的货物从斜面上A点由静止下滑,经长度为S1的传送带运输后,最后抛入固定于水平地面上的圆弧形槽内.已知物体与斜面、传送带间的滑动摩擦因数均为μ=0.5,传送带两皮带轮的半径均为R1=0.4m,传送带上表面BC离地的高度h=1.2m.圆弧槽半径R2=1m,两边缘与圆心连线与竖直方向的夹角均为β=53°.当传送带静止时,将货物在斜面上离B点S2远处静止释放,货物脱离传送带后刚好沿圆弧槽左边缘D点的切线方向飞入槽内.当传送带顺时针转动时,无论传送带转多快,货物也不会从圆弧槽右边缘飞出,求:

(1)传送带静止时,货物到达D点时的速度大小.

(2)求S1、S2的值应满足的关系.(sin53°=0.8,cos53°=0.6 )

程远楚回答:
  (1)物体到达C点的速度为v1,到达D点的速度为v2,   方向与水平方向成53°,v1=v2cos53°①,   从C到D货物机械能守恒,由机械能守恒定律得:   mgh+12
查看更多
物理推荐
热门物理推荐