问题标题:
【用数学归纳法证明:sinx+sin2x+sin3x+……+sinnx=[sin(nx/2)sin((n+1)x/2)]/sin(x/2)】
问题描述:

用数学归纳法证明:sinx+sin2x+sin3x+……+sinnx=[sin(nx/2)sin((n+1)x/2)]/sin(x/2)

谷延锋回答:
  n=1时公式成立;现在假设对n-1公式成立那么sinx+sin2x+sin3x+……+sinnx=sinx+sin2x+sin3x+……+sin(n-1)x+sinnx=[sin((n-1)x/2)sin(nx/2)]/sin(x/2)+sinnx=[sin((n-1)x/2)sin(nx/2)+sinnxsin(x/2)]/sin(x/2)=sin(nx...
查看更多
八字精批 八字合婚 八字起名 八字财运 2024运势 测终身运 姓名详批 结婚吉日
已出生未出生
数学推荐
热门数学推荐
付费后即可复制当前文章
《【用数学归纳法证明:sinx+sin2x+sin3x+……+sinnx=[sin(nx/2)sin((n+1)x/2)]/sin(x/2)】|高中数学问答-字典翻译问答网》
限时特价:5.99元/篇原价:20元