问题标题:
麦克劳林公式怎么证明
问题描述:

麦克劳林公式怎么证明

戴文明回答:
  由f(x)=f(x0)+f'(x0)*(x-x0)+f''(x0)/2!*(x-x0)^2+...+f(n)(x0)/n!*(x-x0)^(n)(泰勒公式)中,令x0=0得f(x)=f(0)+f'(0)*x+f''(x)/2!*x^2+...+f(n)(0)/n!*x^(n)(麦克劳林公式,x^(n)表示x的n阶导数)...
雷庆国回答:
  泰勒公式怎么得来的啊?我给你选为最佳
戴文明回答:
  函数f(x)在点x0某邻域内具有直到n+1阶导数,我们希望找到一个n次多项式Pn(x)=a0+a1(x-x0)+a2(x-x0)^2+…+an(x-x0)^n,使这个多项式与f(x)在x0处具有相同的函数值及相同的直到n阶的导数值,容易确定这个多项式就是Pn(x)=f(x0)+f'(x0)(x-x0)+[f''(x0)/2!](x-x0)^2+…++[f(x0)/n!](x-x0)^n这个多项式就称为f(x)在x0处的n阶泰勒公式.确定Pn(x)一点也不困难,困难的是证明泰勒公式的余项Rn(x)=f(x)-Pn(x)=[f(ξ)/(n+1)!](x-x0)^(n+1)(ξ在x与x0之间),这需要用n+1次柯西中值定理,教科书上都有详细的证明,可参阅同济高等数学第五版上册p138、p139页。
查看更多
八字精批 八字合婚 八字起名 八字财运 2024运势 测终身运 姓名详批 结婚吉日
已出生未出生
数学推荐
热门数学推荐
付费后即可复制当前文章
《麦克劳林公式怎么证明|小学数学问答-字典翻译问答网》
限时特价:5.99元/篇原价:20元