问题标题:
数学求定积分的题x^2*(sinx)^3+tanx-1的原函数是?打清楚一点,
问题描述:
数学求定积分的题x^2*(sinx)^3+tanx-1的原函数是?
打清楚一点,
孔志周回答:
∫(x^2*(sinx)^3+tanx-1)dx
=-j/2∫x2*(ej3x-e-j3x)dx+∫(sinx/cosx)dx+x
又∫x2*ej3xdx
=-x2*ej3x/(3j)+2/(3j)*∫x*ej3xdx
=-x2*ej3x/(3j)-2*x*ej3x/9+9*∫ej3xdx
=-x2*ej3x/(3j)-2*x*ej3x/9+2ej3x/(27j)+C1
令x=-x,
则∫(-x2)*e-j3xd(-x)
==-x2*e-j3x/(3j)+2*x*e-j3x/9+2e-j3x/(27j)+C2
即-∫x2*e-j3xdx
=-x2*e-j3x/(3j)+2*x*e-j3x/9+2e-j3x/(27j)+C2
∫(sinx/cosx)dx=-∫1/cosxd(cosx)=-ln|cosx|+C3
由以上得,
∫(x^2*(sinx)^3+tanx-1)dx
=-j[-x2*(ej3x+e-j3x)/(3j)-2*x*(ej3x/9-e-j3x)+2(ej3x-e-j3x)/(27j)]/2-ln|cosx|+x+C
=x2*(ej3x+e-j3x)/6+jx*(ej3x-e-j3x)/9-(ej3x-e-j3x)/27-ln|cosx|+x+C
=x2*cos(3x)/3-2xsin(3x)/9-2jsin(3x)/27-ln|cosx|+x+C
仅供参考.
查看更多