问题标题:
【已知函数(1)求函数单调递增区间;(2)若存在,使得是自然对数的底数),求实数的取值范围.】
问题描述:
已知函数 |
陈海鹏回答:
已知函数(1)求函数单调递增区间;(2)若存在,使得是自然对数的底数),求实数的取值范围.(1);(2)
试题分析:(1)求导函数,解不等式,其解集和定义域求交集,得函数的单调递增区间,该题中,不等式不易解出,但是可观察到当且时恒成立,故函数在整个定义域内单调递增;(2)由题知只需,即
问题转化为求函数在的值域问题,观察得,当时,;当时,,则,最大值为中的较大者,进而得关于的不等式,再考虑不等式的解集即为实数的取值范围.
试题解析:⑴.
,所以在上是增函数,
又,所以不等式的解集为,
故函数的单调增区间为
⑶因为存在,使得成立,
而当时,,
所以只要即可.
又因为,,的变化情况如下表所示:
查看更多
八字精批
八字合婚
八字起名
八字财运
2024运势
测终身运
姓名详批
结婚吉日