问题标题:
(2013•浙江模拟)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,直线l过点A(4,0),B(0,2),且与椭圆C相切于点P.(Ⅰ)求椭圆C的方程;(Ⅱ)是否存在过点A(4,0)的直线m与椭圆C相
问题描述:

(2013•浙江模拟)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,直线l过点A(4,0),B(0,2),且与椭圆C相切于点P.

(Ⅰ)求椭圆C的方程;

(Ⅱ)是否存在过点A(4,0)的直线m与椭圆C相交于不同的两点M、N,使得36|AP|2=35|AM|•|AN|?若存在,试求出直线m的方程;若不存在,请说明理由.

卜彦龙回答:
  (Ⅰ)由题得过两点A(4,0),B(0,2),直线l的方程为x+2y-4=0.…(1分)   因为ca=12
查看更多
其它推荐
热门其它推荐