问题标题:
【高一数学】平面向量的题目》》》》AB为向量已知任意平面向量AB=(x,y),把向量AB绕其起点沿逆时针方向旋转d角得到向量AP=(xcosd-ysind,xsind+ycosd),叫做把点B绕点A逆时针方向旋转d角得到点P
问题描述:

【高一数学】平面向量的题目》》》》

AB为向量

已知任意平面向量AB=(x,y),把向量AB绕其起点沿逆时针方向旋转d角得到向量AP=(xcosd-ysind,xsind+ycosd),叫做把点B绕点A逆时针方向旋转d角得到点P.

设平面内曲线C上的每一点绕坐标原点沿逆时针方向旋转π/4后得到的点的轨迹是曲线x^2-y^2=3,求原来曲线C的方程.

范文雄回答:
  设原曲线上任一点坐标为(x,y),因为旋转后坐标为(xcosd-ysind,xsind+ycosd),题中d=π/4,所以旋转后坐标为(x/根号2-y/根号2,x/根号2+y/根号2).   把旋转后坐标代入旋转后方程,   得原曲线C为xy+3/2=0
查看更多
八字精批 八字合婚 八字起名 八字财运 2024运势 测终身运 姓名详批 结婚吉日
已出生未出生
数学推荐
热门数学推荐
付费后即可复制当前文章
《【高一数学】平面向量的题目》》》》AB为向量已知任意平面向量AB=(x,y),把向量AB绕其起点沿逆时针方向旋转d角得到向量AP=(xcosd-ysind,xsind+ycosd),叫做把点B绕点A逆时针方向旋转d角得到点P|高中数学问答-字典翻译问答网》
限时特价:5.99元/篇原价:20元