问题标题:
数列{an},an=1/[n*2^(n-1)].前N项和为Sn,求证Sn
问题描述:

数列{an},an=1/[n*2^(n-1)].前N项和为Sn,求证Sn

沈立华回答:
  证明:   ∵当n>1时,(n-2)2^(n-1)≥0   ∴n2^(n-1)-2^n≥0   n2^(n-1)≥2^n   即:1/[n2^(n-1)]≤1/2^n   ∵数列{a[n]},a[n]=1/[n2^(n-1)],前n项和为S[n]   ∴S[n]   =1+1/(2*2^1)+...+1/[n2^(n-1)]   ≤1+1/2^2+...+1/2^n   =1+(1/4)[1-1/2^(n-1)]/(1-1/2)   =1+(1/2)[1-1/2^(n-1)]   <1+1/2   =3/2
查看更多
数学推荐
热门数学推荐