问题标题:
【顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形.如何计算它的面积?奥地利数学家皮克(G.Pick,1859-1942)证明了格点多边形的面积公式:S=a+12b-1,其中a表示多边】
问题描述:
顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形.如何计算它的面积?奥地利数学家皮克(G.Pick,1859-1942)证明了格点多边形的面积公式:S=a+12b-1,其中a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积,如图①a=7,b=8,S=7+12×8-1=10.
(1)在图②方格纸中画一个格点三角形△EFG,使△EFG的面积等于四边形ABCD的面积且为轴对称图形.
(2)在其它两个方格中各画一个面积为6的格点多边形为平行四边形(非菱形)、菱形.
丁云回答:
(1)如图1所示:
;
(2)如图2所示.
查看更多
八字精批
八字合婚
八字起名
八字财运
2024运势
测终身运
姓名详批
结婚吉日