问题标题:
【等差数列{an}的公差为d,若a1,a3,a4,成等比数列,设{an}的前n项和为Sn,(1)使用a1表示Sn;(2)若d=2,设bn=1/Sn+11n,Tn为数列{bn}的前n项和,求证Tn大于3/4】
问题描述:
等差数列{an}的公差为d,若a1,a3,a4,成等比数列,设{an}的前n项和为Sn,(1)使用a1表示Sn;(2)
若d=2,设bn=1/Sn+11n,Tn为数列{bn}的前n项和,求证Tn大于3/4
陈东锋回答:
(a1+2d)^2=a1(a1+3d),解得d=0或d=-a1/4,若d=0,sn=na1,若d=-a1/4,sn=na1+n(n-1)/2x-a1/4=(9n-n^2)a1/8.d=2,a1=-8,sn=n^2-9n,bn=1/(n^-9n+11n)=1/(n^2+2n)=1/n(n+2)=1/2(1/n-1/(n+2))所以,Tn=1/2(1-1/3+1/2-1/4+1/3-1/...
查看更多