问题标题:
【设二维连续型随机变量(X,Y)的联合分布函数为F(x,y)=A(B+arctanx/2)(C+arctany/3)求ABCF(0,无穷大)=1/2是怎么来的?】
问题描述:

设二维连续型随机变量(X,Y)的联合分布函数为F(x,y)=A(B+arctanx/2)(C+arctany/3)求ABC

F(0,无穷大)=1/2是怎么来的?

梁连生回答:
  F(∞,∞)=A(B+π/4)(C+π/6)=1   F(-∞,-∞)=A(B-π/4)(C-π/6)=0   以上可以得到A≠0   然后计算x,y的密度函数,发现x,y的密度函数关于y轴对称.   FX(0)=1/2   也就有F(0,无穷大)=1/2   如有意见,欢迎讨论,共同学习;如有帮助,请选为满意回答!
查看更多
数学推荐
热门数学推荐