问题标题:
在棱长为a的正方体ABCD-A1B1C1D1内任取一点P,则点P到点A的距离小于或等于a的概率为不懂为何“与点A距离等于a的点的轨迹是一个八分之一个球面”
问题描述:

在棱长为a的正方体ABCD-A1B1C1D1内任取一点P,则点P到点A的距离小于或等于a的概率为

不懂为何“与点A距离等于a的点的轨迹是一个八分之一个球面”

汤秀琴回答:
  概率=(4/3πa^3)×(1/8)/a^3=π/6   P到点A的距离小于或等于a,p的范围是个球体,而球体的球心就是A点,球体落在正方体内的部分只有整个球体的1/8   不懂可追问   欢迎采纳
卢庆熊回答:
  就是不理解“球体落在正方体内的部分只有整个球体的1/8”为什么是1/8
汤秀琴回答:
  这玩意说不明白啊画个图就能看出来哈
查看更多
数学推荐
热门数学推荐