问题标题:
【几道数学分式题y=(x^2)/(1+x^2)=f(x),并且f(1)表示,当x=1时,求y.即f(1)=(1^2)/(1+1^1)=1/2.那么f(n)+f(1/n)=?怎么回事啊,我看不懂】
问题描述:
几道数学分式题
y=(x^2)/(1+x^2)=f(x),并且f(1)表示,当x=1时,求y.即f(1)=(1^2)/(1+1^1)=1/2.那么f(n)+f(1/n)=?
怎么回事啊,我看不懂
冯冰回答:
f(n)=n^2/(1+n^2)
f(1/n)=(1/n)^2/[1+(1/n)^2]
=(1/n)^2/[(n^2+1)/n^2]
=1/n^2*n^2/(n^2+1)
=1/(n^2+1)
f(n)+f(1/n)
=n^2/(1+n^2)+1/(n^2+1)
=(n^2+1)/(n^2+1)
=1
查看更多