问题标题:
初一有理数计算题,1/(2^2-1)+1/(3^2-1)+1/(4^2-1)+...+1/(19^2-1)+1/(20^2-1)
问题描述:

初一有理数计算题,

1/(2^2-1)+1/(3^2-1)+1/(4^2-1)+...+1/(19^2-1)+1/(20^2-1)

付津生回答:
  1/(2^2-1)+1/(3^2-1)+1/(4^2-1)+...+1/(19^2-1)+1/(20^2-1)   =1/(2^2-1^2)+1/(3^2-1^2)+1/(4^2-1^2)+...+1/(19^2-1^2)+1/(20^2-1^2)   =1/(2+1)(2-1)+1/(3+1)(3-1)+……+1/(20+1)(20-1)   =1/2*3+1/3*4+...+1/20*21   =(1/2-1/3)+(1/3-1/4)+(1/4-1/5)...+(1/19-1/20)   =1/2-1/20   =9/20
查看更多
数学推荐
热门数学推荐