问题标题:
求极限lim(1-1/2)(1-1/3)(1-1/4)...(1-1/n)=lim(x→∞)(l-1/4)(1-1/9)..(1-1/n^2)=
问题描述:
求极限lim(1-1/2)(1-1/3)(1-1/4)...(1-1/n)=
lim(x→∞)(l-1/4)(1-1/9)..(1-1/n^2)=
刘立志回答:
lim(1-1/2)(1-1/3)(1-1/4)...(1-1/n)=lim(1/2)(2/3)(3/4).[(n-2)/(n-1)][(n-1)/n]=lim1/n=0
lim(l-1/4)(1-1/9)..(1-1/n^2)
=lim(1-1/2)(1-1/3)(1-1/4)...(1-1/n)*(1+1/2)(1+1/3)(1+1/4)...(1+1/n)
=lim1/n*(n+1)/2
=1/2
查看更多