问题标题:
求极限lim(1-1/2)(1-1/3)(1-1/4)...(1-1/n)=lim(x→∞)(l-1/4)(1-1/9)..(1-1/n^2)=
问题描述:

求极限lim(1-1/2)(1-1/3)(1-1/4)...(1-1/n)=

lim(x→∞)(l-1/4)(1-1/9)..(1-1/n^2)=

刘立志回答:
  lim(1-1/2)(1-1/3)(1-1/4)...(1-1/n)=lim(1/2)(2/3)(3/4).[(n-2)/(n-1)][(n-1)/n]=lim1/n=0   lim(l-1/4)(1-1/9)..(1-1/n^2)   =lim(1-1/2)(1-1/3)(1-1/4)...(1-1/n)*(1+1/2)(1+1/3)(1+1/4)...(1+1/n)   =lim1/n*(n+1)/2   =1/2
查看更多
数学推荐
热门数学推荐