问题标题:
【18世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型如图1,解答下列问题:】
问题描述:

18世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型如图1,解答下列问题:

多面体顶点数(V)面数(F)棱数(E)
四面体44
长方体812
正八面体812
正十二面体201230
(1)根据上面多面体模型,完成表格中的空格,你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是______.

(2)一个多面体的面数与顶点数相等,有12条棱,这个多面体是______面体

(3)图2足球虽然是球体,但实际上足球表面是由正五边形,正六边形皮料组成的多面体加工而成每块正五边形皮料周围都是正六边形皮料;每两个相邻的多边形恰有一条公共的边;每个顶点处都有三块皮料,而且都遵循一个正五边形、两个正六边形的规律,请你利用(1)中的关系式,求出一个足球中各有多少块正五边形、正六边形的皮料.

蒋志忠回答:
  (1)四面体的棱数为6;正八面体的顶点数为6;关系式为:V+F-E=2;   (2)由题意得:F+F-12=2,   解得:F=7;   (3)设正五边形x块,正六边形y块,由题意得   x+y+13(5x+6y)−12(5x+6y)=25x=12×6y
查看更多
数学推荐
热门数学推荐