问题标题:
【证明1/n+1/(n+1)+1/(n+2)+……+1/n2>1证明不等式:1/n+1/(n+1)+1/(n+2)+……+1/n^2>1(n>1且n为整数)不要用数学归纳法证明】
问题描述:
证明1/n+1/(n+1)+1/(n+2)+……+1/n2>1
证明不等式:1/n+1/(n+1)+1/(n+2)+……+1/n^2>1(n>1且n为整数)不要用数学归纳法证明
姜旭辉回答:
1/n+1/(n+1)+1/(n+2)+……+1/n^2>
1/(n+1)+1/(n+1)+1/(n+2)+……+1/n^2>
2/(n+1)+1/(n+2)+……+1/n^2>
2/(n+2)+1/(n+2)+……+1/n^2>
3/(n+2)+1/(n+3)……+1/n^2>
``````
n^2+1/n^2>1
查看更多