问题标题:
【证明1/n+1/(n+1)+1/(n+2)+……+1/n2>1证明不等式:1/n+1/(n+1)+1/(n+2)+……+1/n^2>1(n>1且n为整数)不要用数学归纳法证明】
问题描述:

证明1/n+1/(n+1)+1/(n+2)+……+1/n2>1

证明不等式:1/n+1/(n+1)+1/(n+2)+……+1/n^2>1(n>1且n为整数)不要用数学归纳法证明

姜旭辉回答:
  1/n+1/(n+1)+1/(n+2)+……+1/n^2>   1/(n+1)+1/(n+1)+1/(n+2)+……+1/n^2>   2/(n+1)+1/(n+2)+……+1/n^2>   2/(n+2)+1/(n+2)+……+1/n^2>   3/(n+2)+1/(n+3)……+1/n^2>   ``````   n^2+1/n^2>1
查看更多
数学推荐
热门数学推荐