问题标题:
求解答,求过程.向量a=(二分之根号三,二分之一)向量b=(sinx,cosx)x∈[0,二分之π](1)向量a平行向量b,求x(2)y=向量a乘向量b+m,有零点,m的取值
问题描述:
求解答,求过程.向量a=(二分之根号三,二分之一)向量b=(sinx,cosx)x∈[0,二分之π]
(1)向量a平行向量b,求x(2)y=向量a乘向量b+m,有零点,m的取值
汤文晖回答:
(1)向量a∥向量b则sinx:cosx=tanx=√3/2:1/2=√3x∈[0,π/2]则x=π/3(2)√3/2=cos(π/6)1/2=sin(π/6)y=向量乘以向量b+m=sinxcos(π/6)+coxsin(π/6)+m=sin(x+π/6)+m只需要y的最小值不大于...
查看更多