问题标题:
【∫∫(x^2-y^2)dydz+(y^2-z^2)dzdx+(z^2-x^2)dxdy利用高斯公式怎么做啊?S是上半椭球x^2/a^2+y^2/b^2+z^2=1(z>=0)取上侧,高斯公式做完是∫∫∫(x+y+z)dv,之后不会做了】
问题描述:

∫∫(x^2-y^2)dydz+(y^2-z^2)dzdx+(z^2-x^2)dxdy利用高斯公式怎么做啊?

S是上半椭球x^2/a^2+y^2/b^2+z^2=1(z>=0)取上侧,高斯公式做完是∫∫∫(x+y+z)dv,之后不会做了

罗邦莹回答:
  积分区域关于xoz面和yoz面均对称,因此x,y这两个奇函数积分为0,原积分=∫∫∫zdv用截面法计算=∫[0→1]zdz∫∫1dxdy其中二重积分的积分区域是截面:x²/a²+y²/b²≤1-z²被积函数为1,积...
查看更多
八字精批 八字合婚 八字起名 八字财运 2024运势 测终身运 姓名详批 结婚吉日
已出生未出生
数学推荐
热门数学推荐
付费后即可复制当前文章
《【∫∫(x^2-y^2)dydz+(y^2-z^2)dzdx+(z^2-x^2)dxdy利用高斯公式怎么做啊?S是上半椭球x^2/a^2+y^2/b^2+z^2=1(z>=0)取上侧,高斯公式做完是∫∫∫(x+y+z)dv,之后不会做了】|小学数学问答-字典翻译问答网》
限时特价:5.99元/篇原价:20元