问题标题:
高中数学题证明1/n
问题描述:

高中数学题证明1/n

邓聚龙回答:
  构造函数f(n)=ln(n/(n-1))-1/n   求导   f'(n)=[(n-1)/n][(n-1-n)/(n-1)^2]+1/n^2   =1/n^2-1/(n^2-n)   显然n^2>(n^2-n)   ∴1/n^2<1/(n^2-n)   ∴f'(n)<0   ∴f(n)在(0,+∞)是减函数   n→+∞limf(n)=0   ∴f(n)>0   ∴ln(n/(n-1))>1/n
卢永奎回答:
  谢谢你我会了
邓聚龙回答:
  你很聪明,学习进步!
查看更多
数学推荐
热门数学推荐