问题标题:
【函数y=0.5(x-1)^2+0.5,已知F(1,1)P.Q在函数图象上,PQ过F点,求证:1/PF+1/QF=2】
问题描述:

函数y=0.5(x-1)^2+0.5,已知F(1,1)P.Q在函数图象上,PQ过F点,求证:1/PF+1/QF=2

聂雅琳回答:
  设直线PQ是y-1=k(x-1),设P(x1,y1)Q(x2,y2)   联立:x^2-(2+2k)x+2k=0   x1+x2=2+2kx1x2=2k   |PF|=√(x1-1)^2+(y1-1)^2由y1=1/2(x1-1)^2+1/2(x1-1)^2=2y1-1   =√(2y1-1+(y1-1)^2)   =y1   同理:|QF|=y2   所以1/PF+1/QF   =1/y1+1/y2   =(y1+y2)/y1y2   =(k(x1-1)+1+k(x2-1)+1)/(k(x1-1)+1)(k(x2-1)+1)   =(k(x1+x2)+2-2k)/(k^2x1x2+(1-k)(x1+x2)+(1-k)^2)   =2(k^2+1)/(k^2+1)   =2   得证
查看更多
数学推荐
热门数学推荐