问题标题:
【如图1所示,在直角梯形ABCD中,AD∥BC,AB⊥BC,∠DCB=75°,以CD为一边的等边△DCE的另一顶点E在腰AB上.(1)求∠AED的度数;(2)求证:AB=BC;(3)如图2所示,若F为线段CD上一点,∠FBC】
问题描述:

如图1所示,在直角梯形ABCD中,AD∥BC,AB⊥BC,∠DCB=75°,以CD为一边的等边△DCE的另一顶点E在腰AB上.

(1)求∠AED的度数;

(2)求证:AB=BC;

(3)如图2所示,若F为线段CD上一点,∠FBC=30°,求DFFC的值.

孙凤玲回答:
  (1)∵∠BCD=75°,AD∥BC,∴∠ADC=105°.由等边△DCE可知∠CDE=60°,故∠ADE=45°.由AB⊥BC,AD∥BC,可得∠DAB=90°,∴∠AED=45°.(2)证明:由(1)知∠AED=45°,∴AD=AE,故点A在线段DE的垂直...
查看更多
数学推荐
热门数学推荐