问题标题:
已知函数f(x)=2√3sinxcosx+2cos²x-1(1)求函数f(x)的对称轴及在闭区间(0,π/2)上的最值(2)若f(x0)=6/5,x0∈闭区间(π/4,π/2)求cos2x0的值
问题描述:

已知函数f(x)=2√3sinxcosx+2cos²x-1

(1)求函数f(x)的对称轴及在闭区间(0,π/2)上的最值

(2)若f(x0)=6/5,x0∈闭区间(π/4,π/2)求cos2x0的值

李爱华回答:
  f(x)=2√3sinxcosx+2cos²x-1   =√3sin2x+cos2x   =2(√3/2sin2x+1/2cos2x)   =2(sin2xcosπ/6+cos2xsinπ/6)   =2sin(2x+π/6)   (1)   对称轴:2x+π/6=2kπ+π/2   2x=2kπ+π/3   x=kπ+π/6;k∈Z   闭区间【0,π/2】   当x=π/2时;函数有最小值=-2sin(π/6)=-1   当x=π/6时,函数有最大值=2sin(π/2)=-2   (2)2sin(2x0+π/6)=6/5   sin(2x0+π/6)=3/5   sin2x0cosπ/6+cos2x0sinπ/6=3/5   √3sin2x0+cos2x0=6/5(1)   x0∈[π/4,π/2]   2x0∈[π/2,π]   cos2x0≤0   2x0+π/6∈[2π/3,7π/6]   因为:sin(2x0+π/6)=3/5>0   所以:2x0+π/6∈[2π/3,π)   所以:cos(2x0+π/6)
查看更多
数学推荐
热门数学推荐