问题标题:
【问一个积分证明题设f(x)在[0,a]上连续(a>0),证明:∫(0,a)dx∫(0,x)f(x)f(y)dy=(1/2)[∫(0,a)f(x)dx]^2积分符号后面括号里的是上下限】
问题描述:

问一个积分证明题

设f(x)在[0,a]上连续(a>0),证明:

∫(0,a)dx∫(0,x)f(x)f(y)dy=(1/2)[∫(0,a)f(x)dx]^2

积分符号后面括号里的是上下限

韩蕾蕾回答:
  证:   ∫(0,a)dx∫(0,x)f(x)f(y)dy=∫∫(D)f(x)f(y)dxdy   D:0≤y≤x;0≤x≤a(可以在图上画出积分区域,有助解题思维)   又由此题中x,y的对称性可得:   ∫∫(D)f(x)f(y)dxdy=∫∫(D')f(y)f(x)dydx   D':0≤x≤y;0≤y≤a   所以   ∫∫(D)f(x)f(y)dxdy=1/2[∫∫(D)f(x)f(y)dxdy+∫∫(D')f(y)f(x)dydx]=(1/2)[∫∫(D'')f(y)f(x)dydx]   D''=D+D':0≤x≤a;0≤y≤a   所以   (1/2)[∫∫(D'')f(y)f(x)dydx]=(1/2)∫(0,a)dx∫(0,a)f(x)f(y)dy=(1/2)∫(0,a)f(x)dx*∫(0,a)f(y)dy=(1/2)[∫(0,a)f(x)dx]^2   即   ∫(0,a)dx∫(0,x)f(x)f(y)dy=(1/2)[∫(0,a)f(x)dx]^2   得证
查看更多
数学推荐
热门数学推荐