问题标题:
【四棱锥P-ABCD的底面ABCD是直角梯形,AB∥CD,∠ABC=90°,AB=2BC=2CD=2,PA=PD,PA⊥PD,PB=PC.(Ⅰ)求证:平面PAD⊥平面ABCD;(Ⅱ)求直线PB与平面PAD所成角的正切值.】
问题描述:
四棱锥P-ABCD的底面ABCD是直角梯形,AB∥CD,∠ABC=90°,AB=2BC=2CD=2,PA=PD,PA⊥PD,PB=PC.
(Ⅰ)求证:平面PAD⊥平面ABCD;
(Ⅱ)求直线PB与平面PAD所成角的正切值.
刘自忠回答:
(Ⅰ)证明:取AD中点M,BC中点N,连接MN、PN、PM,
则MN是直角梯形ABCD的中位线,∴MN∥AB∥CD,
∵BC⊥AB,∴MN⊥BC,
∵PB=PC,∴△PBC是等腰△,∴PN⊥BC,
∵PN∩NB=N,∴BC⊥平面PMN,
∵PM⊂平面PMN,∴BC⊥PM,
同理PA=PD,∴PM⊥AD,
∵四边形ABCD是梯形,∴在平面ABCD上,AD和BC不平行必相交于一点F,
∴PM⊥平面ABCD,
∵PM⊂平面PAD,∴平面PAD⊥平面ABCD.
(Ⅱ)连接BD,则在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD=2,则BD⊥AD,BD=AD=2
查看更多